# Mathematical Experiment 2

Construct the graph of sin(x) with x ranging in [0, 2].
> plot(sin(x),x=0..2*Pi);

Draw a circle given by the parametric equations
x=cos(t), y=sin(t), t[0,2]

> plot([cos(t),sin(t),t=0..2*Pi],scaling=constrained,axes=none);

Draw the graphs of the first six Chebyshev polynomials in the interval [-1,1].

> m:=[cos(x),cos(n*x),x=0..Pi];

> plot({m\$n=1..6},axes=none);

Draw this pretty leaf:

> w:=1+cos(t)/2:z:=t/6-sin(2*t)/12:x:=w*cos(z):y:=w*sin(z):
plot([x,y,t=0..12*Pi],axes=none,scaling=constrained);

Draw the graphs of the polynomials given by the binomial expansions

> restart;

> m:=[x,binomial(100,k)*x^(100-k)*(1-x)^k,x=0..1]:

> plot({m\$k=0..100},axes=none);

Construct he graph given in polar coordinates by

[0,4]> plot(cos(7*t/2)+1/4,t=0..4*Pi,coords=polar,axes=none,scaling=constrained);

Construct this interesting drawing:

> plot(2-cos(3*t)-cos(31*3*t/32),t=0..64*Pi,coords=polar,
numpoints=1000,axes=none,scaling=constrained);

Reference: William F. Rigge, Envelope Rosettes, Amer. Math. Monthly, (1920), p. 152.

> plot(2-cos(7*t)-cos(31*7*t/32),t=0..64*Pi,coords=polar,
numpoints=1000,axes=none,scaling=constrained);

Reference: William F. Rigge, Envelope Rosettes, Amer. Math. Monthly, (1920), p. 154.

Draw this interesting pattern:

> plot(100+t+15*cos(3.05*t), t = 0 .. 200, coords =
polar, axes = none,scaling=constrained);

Construct a gif file animating the function
f(x,t) = sin (x + t)
and include the gif in your web page.